Mass and spring dimer Fermi–Pasta–Ulam–Tsingou nanopterons with exponentially small, nonvanishing ripples

Author:

Faver Timothy E.1,Hupkes Hermen Jan2

Affiliation:

1. Department of Mathematics Kennesaw State University Marietta Georgia USA

2. Mathematical Institute Universiteit Leiden Leiden The Netherlands

Abstract

AbstractWe study traveling waves in mass and spring dimer Fermi–Pasta–Ulam–Tsingou (FPUT) lattices in the long wave limit. Such lattices are known to possess nanopteron traveling waves in relative displacement coordinates. These nanopteron profiles consist of the superposition of an exponentially localized “core,” which is close to a Korteweg–de Vries solitary wave, and a periodic “ripple,” whose amplitude is small beyond all algebraic orders of the long wave parameter, although a zero amplitude is not precluded. Here we deploy techniques of spatial dynamics, inspired by results of Iooss and Kirchgässner, Iooss and James, and Venney and Zimmer, to construct mass and spring dimer nanopterons whose ripples are both exponentially small and also nonvanishing. We first obtain “growing front” traveling waves in the original position coordinates and then pass to relative displacement. To study position, we recast its traveling wave problem as a first‐order equation on an infinite‐dimensional Banach space; then we develop hypotheses that, when met, allow us to reduce such a first‐order problem to one solved by Lombardi. A key part of our analysis is then the passage back from the reduced problem to the original one. Our hypotheses free us from working strictly with lattices but are easily checked for FPUT mass and spring dimers. We also give a detailed exposition and reinterpretation of Lombardi's methods, to illustrate how our hypotheses work in concert with his techniques, and we provide a dialog with prior methods of constructing FPUT nanopterons, to expose similarities and differences with the present approach.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Korteweg–de Vries waves in peridynamical media;Studies in Applied Mathematics;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3