Cracking of a functionally graded coating due to sliding contact with heat generation

Author:

Balci Mehmet N.1ORCID,Dag Serkan2,Yildirim Bora1

Affiliation:

1. Mechanical Engineering Department Hacettepe University Ankara Turkey

2. Mechanical Engineering Department Middle East Technical University Ankara Turkey

Abstract

AbstractIn this work, the thermal contact problem of a rigid flat punch sliding over functionally graded material (FGM) coating with a surface crack is investigated. The surface of a homogeneous isotropic substrate is ideally coated by FGM. The coefficient of friction on the contact surface is assumed to be constant, and dry Coulomb friction law is applied. The major purpose of this study is to compute the stress intensity factors at the tip of a surface crack under thermomechanical loading. In this perspective, the thermoelastic contact and the surface crack problems are modeled using finite element method. An iterative solution procedure based on finite elements is developed to solve the contact/crack problem until generated frictional heat reach the steady‐state condition. Obtained results are compared to those available in the open literature, and a good agreement is observed. Presented results involve stress intensity factors computed under various thermoelastic sliding conditions.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3