Spatial extent predicts Andean epiphyte biodiversity responses to habitat loss and fragmentation across human‐modified landscapes

Author:

Parra‐Sanchez Edicson1ORCID,Edwards David P.2ORCID

Affiliation:

1. Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield UK

2. Department of Plant Sciences and Conservation Research Institute University of Cambridge Cambridge UK

Abstract

AbstractAimHuman‐driven landscape processes such as habitat loss and fragmentation act on biodiversity, but their effects are mediated by the spatial scale at which they are observed. We aim to analyse the scale‐of‐effects (direction and spatial extent) of landscape‐scale processes that best explain species richness and abundance across epiphyte communities.LocationNeotropics, Northern Andes, Colombia, Eastern cordillera.TaxonVascular epiphytes, Orchidaceae.MethodsWe used field data to unravel the scale‐of‐effect of three landscape processes—habitat loss (forest cover), fragmentation (number of patches) and edge effects (edge density)—on epiphyte biodiversity. Vascular epiphytes were sampled in the understorey across 141 plots within 23 Andean forests in the eastern Colombian cordillera We focused on the community‐level responses (species richness and total abundance) of the hyperdiverse vascular epiphyte communities using generalized linear mixed models to quantify the direction and the spatial extent of the scale‐of‐effects.ResultsHabitat loss and edge effects act at fine spatial extents (scale‐of‐effects = 200 m), predicting low species richness and abundance across groups. Likewise, fragmentation negatively impacts communities, but operates at larger spatial extents (scale‐of‐effects = 2000–2400 m radius). The detection of these effects is contingent upon the spatial extent and specific landscape processes involved. Models of habitat loss within a spatial extent of 800–1500 m (large confidence intervals), fragmentation below 300 m, and edge effects above 800 m show weak statistical support (marginal r2 = 0.02–0.1). Thus, the impacts of these landscape processes may be overlooked if studied at inadequate spatial extents.Main ConclusionsWe showed that habitat loss, fragmentation and edge effects all play a negative role on understorey epiphytic communities, but their detectability is scale dependant. The scale‐of‐effects can assist landscape designs that are beneficial for epiphytic communities, by preserving forest cover, and reducing fragmentation and exposure to edge effects at small scales (200–300 m). Conversely, landscape‐scale actions directed at reducing habitat loss and fragmentation function at larger spatial extents (>2000 m). Selecting a priori or inadequate spatial extents of analysis can obscure the detectability of landscape processes.

Funder

Natural Environment Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3