A gain‐of‐function mutation at the C‐terminus of FTD1 promotes heading by interacting with 14‐3‐3A and FDL6 in wheat

Author:

Li Yuting12,Xiong Hongchun1,Guo Huijun1,Xie Yongdun1,Zhao Linshu1,Gu Jiayu1,Li Huiyuan1,Zhao Shirong1,Ding Yuping1,Zhou Chunyun1,Fang Zhengwu2,Liu Luxiang1ORCID

Affiliation:

1. State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081 China

2. MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co‐construction by Ministry and Province) College of Agriculture, Yangtze University Jingzhou 434025 China

Abstract

SummaryVernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain‐of‐function mutation in FT‐D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray‐induced eh1 wheat mutant. Knockout of the wild‐type and overexpression of the mutated FT‐D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT‐D1eh1 exon 3 led to gain‐of‐function interactions with 14‐3‐3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering‐related transcriptomic programme. This mutation did not affect FT‐D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT‐D1 translocation to the shoot apical meristem. Furthermore, the ‘Segment B’ external loop is essential for FT‐D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT‐D1 regulatory target. This study illustrates FT‐D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3