Increased Dickkopf-1 expression in patients with unexplained recurrent spontaneous miscarriage

Author:

Bao S H1,Shuai W1,Tong J1,Wang L2,Chen P2,Duan T3

Affiliation:

1. Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China

2. Department of Ultrasound, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China

3. Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China

Abstract

Summary Wnt pathways play an important role in pre-implantation embryo development, blastocyst implantation, and post-implantation uterine decidualisation. However, little is known about the potential role that Wnt signaling plays in patients with unexplained recurrent spontaneous miscarriage (URSM), and no single biomarker with a high predictive value of maternally caused URSM has been identified. We aim to study the molecular mechanisms by which the Wnt pathway controls the progression of early pregnancy by investigating the expression of Dickkopf-1 (DKK1), one of the Wnt agonists, in URSM patients. Plasma and fresh decidual tissues samples were collected from 59 subjects (29 patients with URSM and 30 patients with normal, early pregnancy). Time-resolved immunofluorometric assay system and quantitative real-time RT-PCR were used to determine the serum levels of DKK1 and DKK1 mRNA in the deciduas, respectively. Western blot and immunohistochemistry were used to measure DKK1 protein levels in the deciduas. Serum DKK1 levels were significantly higher in URSM patients compared to the control group (P < 0·001); the expression of DKK1 mRNA and protein in URSM patients were higher relative to healthy controls (P = 0·013). Glandular epithelium from decidual tissues demonstrated cytoplasmic signals for DKK1 in URSM patients, and DKK1 did not stain in healthy controls. Furthermore, serum DKK1 levels significantly correlated with those in the decidual tissues. Our study suggests that DKK1 may be a valuable biomarker of URSM; it can be reliably and conveniently detected in serum, thus obviating the need for decidual tissue analysis.

Funder

National Natural Science Foundation of China

Specialized Research Fund for the Doctoral Program of Higher Education of China

Natural Science Foundation of Shanghai

Research Funds of Shanghai Health Bureau

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3