An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using μCT and machine learning algorithms

Author:

Diller Johannes1ORCID,Siebert Ludwig2,Winkler Michael3ORCID,Siebert Dorina1ORCID,Blankenhagen Jakob1,Wenzler David2,Radlbeck Christina1,Mensinger Martin1ORCID

Affiliation:

1. TUM School of Engineering and Design, Chair of Metal Structures Technical University of Munich Bavaria Germany

2. TUM School of Engineering and Design, Institute for Machine Tools and Industrial Management (IWB) Technical University of Munich Bavaria Germany

3. Department 9 Component Safety Bundesanstalt für Materialforschung‐ und prüfung Berlin Germany

Abstract

AbstractThis research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF‐LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro‐computed tomography ( CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3