A direct analytical methodology for the assessment of ductile fracture in metals based on multiaxial tests

Author:

Cortis Gabriele1,Piacenti Marcello1,Nalli Filippo2,Cortese Luca1

Affiliation:

1. Department of Mechanical and Aerospace Engineering Sapienza University of Rome Rome Italy

2. Rina Consulting – Centro Sviluppo Materiali Rome Italy

Abstract

AbstractThe prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical‐numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17‐4PH steel, an X65 steel, and a Ti6Al4V alloy.

Funder

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3