Inspection data‐based prediction on fatigue crack of orthotropic steel deck using interpretable machine learning method

Author:

Ma Yihu1,Wang Benjin2ORCID,Chen Airong3

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University Shanghai China

2. School of Aerospace Engineering and Applied Mechanics Tongji University Shanghai China

3. Department of Bridge Engineering Tongji University Shanghai China

Abstract

AbstractThe prediction of fatigue cracks on orthotropic steel decks is of great significance to the maintenance of bridges. However, fatigue cracks are affected by various uncertainties in reality, which encourages a data‐driven study for the sake of reliability and accuracy of predictions. Based on the crack inspection data from orthotropic steel decks on actual bridges in China, the feature engineering is conducted considering fatigue crack behaviors, and the machine learning models are trained and tested for predicting cracks, including XGBoost, random forest, and multiple decision trees. According to the receiver operating characteristic curves of the three models, the XGBoost model has the best performance, whereas the average AUC is about 0.75, limited by the insufficient data volume of positive samples. With the SHAP values of all features, the interpretation of the machine learning model is presented, indicating that the global effects, that is, the longitudinal position, the loading condition, and the bridge age, are always influential factors for fatigue cracks. The local features concerning the interactions between cracks have an effect on crack behaviors to a certain extent, but less important. Accordingly, the interpretable machine learning model can provide conservative predictions in a rather transparent way on this issue, which can benefit decision‐making in bridge designs, maintenance, and management.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3