TensorCRO: A TensorFlow‐based implementation of a multi‐method ensemble for optimization

Author:

Palomo‐Alonso A.1ORCID,Costa V. G.2ORCID,Moreno‐Saavedra L. M.1ORCID,Lorente‐Ramos E.1ORCID,Pérez‐Aracil J.1ORCID,Pedreira C. E.2ORCID,Salcedo‐Sanz S.1ORCID

Affiliation:

1. Department of Signal Processing and Communications Universidad de Alcalá Madrid Spain

2. Department of Systems and Computation Engineering Federal University of Rio de Janeiro Rio de Janeiro Brazil

Abstract

AbstractThis paper presents a novel implementation of the Coral Reef Optimization with Substrate Layers (CRO‐SL) algorithm. Our approach, which we call TensorCRO, takes advantage of the TensorFlow framework to represent CRO‐SL as a series of tensor operations, allowing it to run on GPU and search for solutions in a faster and more efficient way. We evaluate the performance of the proposed implementation across a wide range of benchmark functions commonly used in optimization research (such as the Rastrigin, Rosenbrock, Ackley, and Griewank functions), and we show that GPU execution leads to considerable speedups when compared to its CPU counterpart. Then, when comparing TensorCRO to other state‐of‐the‐art optimization algorithms (such as the Genetic Algorithm, Simulated Annealing, and Particle Swarm Optimization), the results show that TensorCRO can achieve better convergence rates and solutions than other algorithms within a fixed execution time, given that the fitness functions are also implemented on TensorFlow. Furthermore, we also evaluate the proposed approach in a real‐world problem of optimizing power production in wind farms by selecting the locations of turbines; in every evaluated scenario, TensorCRO outperformed the other meta‐heuristics and achieved solutions close to the best known in the literature. Overall, our implementation of the CRO‐SL algorithm in TensorFlow GPU provides a new, fast, and efficient approach to solving optimization problems, and we believe that the proposed implementation has significant potential to be applied in various domains, such as engineering, finance, and machine learning, where optimization is often used to solve complex problems. Furthermore, we propose that this implementation can be used to optimize models that cannot propagate an error gradient, which is an excellent choice for non‐gradient‐based optimizers.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3