Semantic community query in a large‐scale attributed graph based on an attribute cohesiveness optimization strategy

Author:

Ge Jinhuan12ORCID,Sun Heli1ORCID,Lin Yezhi2,He Liang1

Affiliation:

1. The School of Computer Science and Technology Xi'an Jiaotong University Xi'an China

2. The First Affiliated Hospital Wenzhou Medical University Wenzhou China

Abstract

AbstractThe task of a semantic community query is to obtain a subgraph based on a given query vertex (or vertex set) and other query parameters in an attributed graph such that belongs to , contains and satisfies a predefined community cohesiveness model. In most cases, existing community query models based on the network structure for traditional attributed networks usually lack community semantics. However, the features of vertex attributes, especially the attributes of the query vertices, which are closely related to the community semantics, are rarely considered in an attributed graph. Existing community query algorithms based on both structure cohesiveness and attribute cohesiveness usually do not take the attributes of the query vertex as an important factor of the community cohesiveness model, which leads to weak semantics of the communities. This paper proposes a semantic community query method named in a large‐scale attributed graph. First, the k‐core structure model is adopted as the structure cohesiveness of our community query model to obtain a subgraph of the original graph. Second, we define attribute cohesiveness based on the average distance between the query vertices and other vertices in terms of attributes in the community to prune the subgraph and obtain the semantic community. In order to improve the community query efficiency in large‐scale attributed graphs, applies two heuristic pruning strategies. The experimental results show that our method outperforms the existing community query methods in multiple evaluation metrics and is ideal for querying semantic communities in large‐scale attributed graphs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Projects of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3