One‐step multiple kernel k‐means clustering based on block diagonal representation

Author:

Chen Cuiling1ORCID,Li Zhi23

Affiliation:

1. School of Mathematics and Statistics, The Center for Applied Mathematics of Guangxi Guangxi Normal University Guilin Guangxi China

2. Guangxi Key Lab of Multisource Information Mining and Security, School of Computer Science and Engineering Guangxi Normal University Guilin Guangxi China

3. Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, China

Abstract

AbstractMultiple kernel k‐means clustering (MKKC) can efficiently incorporate multiple base kernels to generate an optimal kernel. Many existing MKKC methods all need two‐step operation: learning clustering indicator matrix and performing clustering on it. However, the optimal clustering results of two steps are not equivalent to those of original problem. To address this issue, in this paper we propose a novel method named one‐step multiple kernel k‐means clustering based on block diagonal representation (OS‐MKKC‐BD). By imposing a block diagonal constraint on the product of indicator matrix and its transpose, this method can encourage the indicator matrix to be block diagonal. Then the indicator matrix can produce explicit clustering indicator, so as to implement one‐step clustering, which avoids the disadvantage of two‐step operation. Furthermore, a simple kernel weighting strategy is used to obtain an optimal kernel, which boosts the quality of optimal kernel. In addition, a three‐step iterative algorithm is designed to solve the corresponding optimization problem, where the Riemann conjugate gradient iterative method is used to solve the optimization problem of the indicator matrix. Finally, by extensive experiments on eleven real data sets and comparison of clustering results with 10 MKC methods, it is concluded that OS‐MKKC‐BD is effective.

Funder

National Natural Science Foundation of China

Guangxi Key Laboratory of Multi-Source Information Mining and Security

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Guangxi Normal University

Publisher

Wiley

Reference35 articles.

1. Multi-view kernel completion

2. Dattorro J.(2010).Convex optimization and Euclidean distance geometry.http://meboo.convexoptimization.com/Meboo.html

3. Mercer kernel-based clustering in feature space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3