Federated learning‐driven dual blockchain for data sharing and reputation management in Internet of medical things

Author:

Gan Chenquan12,Xiao Xinghai2,Zhu Qingyi1,Jain Deepak Kumar34ORCID,Saini Akanksha5,Hussain Amir6ORCID

Affiliation:

1. School of Cyber Security and Information Law Chongqing University of Posts and Telecommunications Chongqing China

2. School of Communications and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China

3. Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education Dalian University of Technology Dalian China

4. Symbiosis Institute of Technology Symbiosis International University Pune India

5. College of Business and Law RMIT University Melbourne Australia

6. Centre of AI and Robotics Edinburgh Napier University Edinburgh UK

Abstract

AbstractIn the Internet of Medical Things (IoMT), the vulnerability of federated learning (FL) to single points of failure, low‐quality nodes, and poisoning attacks necessitates innovative solutions. This article introduces a FL‐driven dual‐blockchain approach to address these challenges and improve data sharing and reputation management. Our approach comprises two blockchains: the Model Quality Blockchain (MQchain) and the Reputation Incentive Blockchain (RIchain). MQchain utilizes an enhanced Proof of Quality (PoQ) consensus algorithm to exclude low‐quality nodes from participating in aggregation, effectively mitigating single points of failure and poisoning attacks by leveraging node reputation and quality thresholds. In parallel, RIchain incorporates a reputation evaluation, incentive mechanism, and index query mechanism, allowing for rapid and comprehensive node evaluation, thus identifying high‐reputation nodes for MQchain. Security analysis confirms the theoretical soundness of the proposed method. Experimental evaluation using real medical datasets, specifically MedMNIST, demonstrates the remarkable resilience of our approach against attacks compared to three alternative methods.

Funder

Guangxi Key Research and Development Program

Chongqing Research Program of Basic Research and Frontier Technology

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3