Viscosity effects on the dynamics of diols and diol‐based deep eutectic solvents

Author:

Chatterjee Srijan12ORCID,Deshmukh Samadhan H.12,Chowdhury Tubai12ORCID,Bagchi Sayan12ORCID

Affiliation:

1. Physical and Materials Chemistry Division National Chemical Laboratory (CSIR‐NCL) Pune India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

Abstract

AbstractDiols, characterized by the presence of two hydroxyl groups, form extended hydrogen‐bonded networks. Increasing hydrocarbon chain length is known to elevate the viscosity of diols. Given the established influence of viscosity on solvent dynamics, it becomes imperative to comprehend the impact of viscosity on the fluctuation dynamics within diols and establish connections with hydrogen bond formation and breaking dynamics. In this study, we employ two‐dimensional infrared spectroscopy to investigate the viscosity dependence of the structural evolution dynamics in three diols with varying chain lengths. Complementing our experimental approach, molecular dynamics simulations are conducted to extract hydrogen bond lifetimes. Our findings reveal a linear correlation between bulk viscosity, solvent fluctuation timescales, and hydrogen bond lifetimes. Notably, the selected diols exhibit the capability to form deep eutectic solvents upon mixing with choline chloride at specific molar ratios. In contrast to molecular solvents like diols, deep eutectic solvents are characterized by the formation of heterogeneous nanodomains, comprising various intercomponent hydrogen‐bonded networks. Interestingly, our observations indicate that while the fluctuation dynamics decelerate with increasing bulk viscosity in diol‐based deep eutectic solvents, the relationship between viscosity and dynamics is not linear, in contrast to the observed linearity in diols. This nuanced understanding contributes to the broader comprehension of the interplay between viscosity and dynamics in both molecular and deep eutectic solvents.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3