Flower orientation and corolla length as reproductive barriers in the pollinator‐driven divergence of Erica shannonea and Erica ampullacea

Author:

McCarren S.1ORCID,Johnson S. D.2ORCID,Theron G. L.3,Coetzee A.4,Turner R.1,Midgley J.1

Affiliation:

1. Department of Biological Sciences University of Cape Town Cape Town South Africa

2. Centre for Functional Biodiversity School of Life Sciences, University of KwaZulu‐Natal Pietermaritzburg South Africa

3. Department of Natural Sciences KwaZulu‐Natal Museum Pietermaritzburg South Africa

4. Nelson‐Mandela University George South Africa

Abstract

Abstract A variety of reproductive barriers can enable reproductive isolation and stable coexistence of plant species. Differing floral traits might play an important role in reproductive isolation imposed by pollinators. Such shifts in pollinator use have been hypothesized to contribute to the radiation of Erica (Ericaceae) in the Cape Floristic Region, South Africa. The sister species Erica shannonea and Erica ampullacea co‐occur and overlap in flowering phenology. Both have unscented long‐tubed flowers consistent with adaptations for pollination by long‐proboscid flies (LPFs), but differences in flower orientation and corolla tube length are indicative of a shift in pollinator species. We conducted controlled pollination experiments and pollinator observations to determine the breeding system and pollinators of the two species. Both species are self‐incompatible and require pollinator visits for seed production, suggesting that pollinators could strongly influence flower evolution. The horizontally orientated flowers of E. shannonea were found to be pollinated by Philoliche rostrata (Tabanidae), which has a long, fixed forward‐pointing proboscis, while the vertically upright orientated flowers of E. ampullacea were found to be pollinated by Prosoeca westermanni (Nemestrinidae), which has a shorter proboscis that can swivel downwards. The nemestrinid fly's proboscis is too short to access the nectar in the relative long‐tubed flowers of E. shannonea and the tabanid fly's proboscis cannot swivel down to access the upright flowers of E. ampullacea. Consequently, these traits are likely to act as reproductive barriers between the two Erica species and thereby might have contributed to speciation and enable stable coexistence.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3