Prioritizing conservation efforts based on future habitat availability and accessibility under climate change

Author:

Liang Jie12ORCID,Wang Wanting12,Cai Qing3,Li Xin12,Zhu Ziqian12,Zhai Yeqing12,Li Xiaodong12,Gao Xiang12,Yi Yuru12

Affiliation:

1. College of Environmental Science and Engineering Hunan University Changsha P.R. China

2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education Changsha P.R. China

3. Hunan Research Academy of Environmental Sciences Changsha P.R. China

Abstract

AbstractThe potential for species to shift their ranges to avoid extinction is contingent on the future availability and accessibility of habitats with analogous climates. To develop conservation strategies, many previous researchers used a single method that considered individual factors; a few combined 2 factors. Primarily, these studies focused on identifying climate refugia or climatically connected and spatially fixed areas, ignoring the range shifting process of animals. We quantified future habitat availability (based on species occurrence, climate data, land cover, and elevation) and accessibility (based on climate velocity) under climate change (4 scenarios) of migratory birds across the Yangtze River basin (YRB). Then, we assessed species’ range‐shift potential and identified conservation priority areas for migratory birds in the 2050s with a network analysis. Our results suggested that medium (i.e., 5–10 km/year) and high (i.e., ≥ 10 km/year) climate velocity would threaten 18.65% and 8.37% of stable habitat, respectively. Even with low (i.e., 0–5 km/year) climate velocity, 50.15% of climate‐velocity‐identified destinations were less available than their source habitats. Based on our integration of habitat availability and accessibility, we identified a few areas of critical importance for conservation, mainly in Sichuan and the middle to lower reaches of the YRB. Overall, we identified the differences between habitat availability and accessibility in capturing biological responses to climate change. More importantly, we accounted for the dynamic process of species’ range shifts, which must be considered to identify conservation priority areas. Our method informs forecasting of climate‐driven distribution shifts and conservation priorities.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3