Disentangling the biotic and abiotic drivers of bird–building collisions in a tropical Asian city with ecological niche modeling

Author:

Tan David J. X.1ORCID,Freymueller Nicholas A.1,Teo Kah Ming2,Symes William S.3,Lum Shawn K. Y.4,Rheindt Frank E.5ORCID

Affiliation:

1. Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico USA

2. National Parks Board Singapore Singapore

3. Organization for Economic Co‐operation and Development Paris France

4. Asian School of the Environment Nanyang Technological University Singapore Singapore

5. Department of Biological Sciences National University of Singapore Singapore Singapore

Abstract

AbstractBird collisions with buildings are responsible for a large number of bird deaths in cities around the world, yet they remain poorly studied outside North America. We conducted one of the first citywide fine‐scale and landscape‐scale analyses of bird–building collisions in Asia and used maximum entropy modeling (as commonly applied to species distribution modeling) in a novel way to assess the drivers of bird–building collisions in the tropical city‐state of Singapore. We combined 7 years of community science observations with publicly available building and remote sensing data. Drivers of bird–building collisions varied among taxa. Some migratory taxa had a higher relative collision risk that was linked to areas with high building densities and high levels of nocturnal blue light pollution. Nonmigratory taxa had a higher collision risk in areas near forest cover. Projecting our results onto official long‐term land‐use plans, we predicted that future increases in bird–building collision risk stemmed from increases in blue light pollution and encroachment of buildings into forested areas and identified 6 potential collision hotspots linked to future developments. Our results suggest that bird–building collision mitigation measures need to account for the different drivers of collision for resident and migratory species and show that combining community science and ecological modeling can be a powerful approach for analyzing bird–building collision data.

Publisher

Wiley

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3