Using explainable machine learning methods to evaluate vulnerability and restoration potential of ecosystem state transitions

Author:

Delaney John T.1ORCID,Larson Danelle M.1ORCID

Affiliation:

1. U.S. Geological Survey La Crosse Wisconsin USA

Abstract

AbstractEcosystem state transitions can be ecologically devastating or be a restoration success. State transitions are common within aquatic systems worldwide, especially considering human‐mediated changes to land use and water use. We created a transferable conceptual framework to enable multiscale assessments of state resilience and early warnings of state transitions that can inform strategic restorations and avoid ecosystem collapse. The conceptual framework integrated machine learning predictions with ecosystem state concepts (e.g., state classification, gradients of vulnerability, and recovery potential leading to state transitions) and was devised to investigate possible environmental drivers. As an application of the framework, we generated prediction probabilities of submersed aquatic vegetation (SAV) presence at nearly 10,000 sites in the Upper Mississippi River (United States). Then, we used an interpretability method to explain model predictions to gain insights into possible environmental drivers and thresholds or linear responses of SAV presence and absence. Model accuracy was 89% without spatial bias. Average water depth, suspended solids, substrate, and distance to nearest SAV were the best predictors and likely environmental drivers of SAV habitat suitability. These environmental drivers exhibited nonlinear, threshold‐type responses for SAV. All the results are also presented in an online dashboard to explore results at many spatial scales. The habitat suitability model outputs and prediction explanations from many spatial scales (4 m to 400 km of river reach) can inform research and restoration planning.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3