Patterns of recovery in extant and extirpated seabirds after the world's largest multipredator eradication

Author:

Bird Jeremy P.1ORCID,Fuller Richard A.1ORCID,Shaw Justine D.1ORCID

Affiliation:

1. School of Biological Sciences The University of Queensland St Lucia Queensland Australia

Abstract

AbstractEradicating invasive predators from islands can result in substantial recovery of seabirds, but the mechanisms that drive population changes remain poorly understood. Meta‐analyses have recently revealed that immigration is surprisingly important to the recovery of philopatric seabirds, but it is not known whether dispersal and philopatry interact predictably to determine rates of population growth and changes of distribution. We used whole‐island surveys and long‐term monitoring plots to study the abundance, distribution, and trends of 4 burrowing seabird species on Macquarie Island, Australia, to examine the legacy impacts of invasive species and ongoing responses to the world's largest eradication of multiple species of vertebrates. Wekas (Gallirallus australis) were eradicated in 1988; cats (Felis catus) in 2001; and rabbits (Oryctolagus cuniculus), black rats (Rattus rattus), and mice (Mus mus) in 2011–2014. We compared surveys from 1976–1979 and 2017–2018 and monitoring from the 1990s and 2000s onward. Antarctic prions (Pachyptila desolata) and white‐headed petrels (Pterodroma lessonii) increased ∼1% per year. Blue petrels (Halobaena caerulea) and gray petrels (Procellaria cinerea) recolonized following extirpation from the main island in the 1900s but remained spatially and numerically rare in 2018. However, they increased rapidly at 14% and 10% per year, respectively, since cat eradication in 2001. Blue and gray petrel recolonization occurred on steep, dry, west‐facing slopes close to ridgelines at low elevation (i.e., high‐quality petrel habitat). They overlapped <5% with the distribution of Antarctic prion and white‐headed petrels which occurred in suboptimal shallow, wet, east‐facing slopes at high elevation. We inferred that the speed of population growth of recolonizing species was related to their numerically smaller starting size compared with the established species and was driven by immigration and selection of ideal habitat.

Publisher

Wiley

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3