A calibrated data‐driven approach for small area estimation using big data

Author:

Tam Siu‐Ming12ORCID,Sharmeen Shaila3

Affiliation:

1. National Institute of Applied Statistical Research University of Wollongong, Northfields Avenue Wollongong NSW 2522 Australia

2. Methodology and Data Science Division Australian Bureau of Statistics, ABS House, Benjamin Way Belconnen ACT 2617 Australia

3. School of Information Technology Deakin University Burwood VIC 3125 Australia

Abstract

SummaryWhere the response variable in a big dataset is consistent with the variable of interest for small area estimation, the big data by itself can provide the estimates for small areas. These estimates are often subject to the coverage and measurement error bias inherited from the big data. However, if a probability survey of the same variable of interest is available, the survey data can be used as a training dataset to develop an algorithm to impute for the data missed by the big data and adjust for measurement errors. In this paper, we outline a methodology for such imputations based on an k‐nearest neighbours (kNN) algorithm calibrated to an asymptotically design‐unbiased estimate of the national total, and illustrate the use of a training dataset to estimate the imputation bias and the “fixed‐k asymptotic” bootstrap to estimate the variance of the small area hybrid estimator. We illustrate the methodology of this paper using a public‐use dataset and use it to compare the accuracy and precision of our hybrid estimator with the Fay–Harriot (FH) estimator. Finally, we also examine numerically the accuracy and precision of the FH estimator when the auxiliary variables used in the linking models are subject to undercoverage errors.

Publisher

Wiley

Reference51 articles.

1. On the Failure of the Bootstrap for Matching Estimators

2. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review

3. Total Error in a Big Data World: Adapting the TSE Framework to Big Data

4. Australian Bureau of Statistics(2015).MADIP. Available from URL:https://www.abs.gov.au/about/data‐services/data‐integration/integrated‐data/multi‐agency‐data‐integration‐project‐madip

5. Australian Bureau of Statistics(2020).Census of Population and Housing 2016. Available from URL:https://www.abs.gov.au/statistics/microdata‐tablebuilder/datalab

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3