Approximate inferences for Bayesian hierarchical generalised linear regression models

Author:

Berman Brandon1,Johnson Wesley O.1ORCID,Shen Weining1

Affiliation:

1. Department of Statistics University of California Irvine CA USA

Abstract

SummaryGeneralised linear mixed regression models are fundamental in statistics. Modelling random effects that are shared by individuals allows for correlation among those individuals. There are many methods and statistical packages available for analysing data using these models. Most require some form of numerical or analytic approximation because the likelihood function generally involves intractable integrals over the latents. The Bayesian approach avoids this issue by iteratively sampling the full conditional distributions for various blocks of parameters and latent random effects. Depending on the choice of the prior, some full conditionals are recognisable while others are not. In this paper we develop a novel normal approximation for the random effects full conditional, establish its asymptotic correctness and evaluate how well it performs. We make the case for hierarchical binomial and Poisson regression models with canonical link functions, for hierarchical gamma regression models with log link and for other cases. We also develop what we term a sufficient reduction (SR) approach to the Markov Chain Monte Carlo algorithm that allows for making inferences about all model parameters by replacing the full conditional for the latent variables with a considerably reduced dimensional function of the latents. We expect that this approximation could be quite useful in situations where there are a very large number of latent effects, which may be occurring in an increasingly ‘Big Data’ world. In the sequel, we compare our methods with INLA, which is a particularly popular method and which has been shown to be excellent in terms of speed and accuracy across a variety of settings. Our methods appear to be comparable to theirs in terms of accuracy, while INLA was faster, for the settings we considered. In addition, we note that our methods and those of others that involve Gibbs sampling trivially handle parameters that are functions of multiple parameters, while INLA approximations do not. Our primary illustration is for a three‐level hierarchical binomial regression model for data on health outcomes for patients who are clustered within physicians who are clustered within particular hospitals or hospital systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3