Examining collinearities

Author:

Shabuz Zillur R.1ORCID,Garthwaite Paul H.2

Affiliation:

1. Department of Statistics University of Dhaka Dhaka 1000 Bangladesh

2. School of Mathematics and Statistics The Open University Milton Keynes MK7 6AA UK

Abstract

SummaryThe cos‐max method is a little‐known method of identifying collinearities. It is based on the cos‐max transformation, which makes minimal adjustment to a set of vectors to create orthogonal components with a one‐to‐one correspondence between the original vectors and the components. The aim of the transformation is that each vector should be close to the orthogonal component with which it is paired. Vectors involved in a collinearity must be adjusted substantially in order to create orthogonal components, while other vectors will typically be adjusted far less. The cos‐max method uses the size of adjustments to identify collinearities. It gives a coherent relationship between collinear sets of variables and variance inflation factors (VIFs) and identifies collinear sets using more information than traditional methods. In this paper we describe these features of the method and examine its performance in examples, comparing it with alternative methods. In each example, the collinearities identified by the cos‐max method only contained variables with high VIFs and contained all variables with high VIFs. The collinearities identified by other methods did not have such a close link to VIFs. Also, the collinearities identified by the cos‐max method were as simple as or simpler than those given by other methods, with less overlap between collinearities in the variables that they contained.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3