Early spiral arteriole remodeling in the uterine–placental interface: A rat model

Author:

Bacon Sarah J.1ORCID,Zhu Yuxi1,Ghosh Priyanjali1ORCID

Affiliation:

1. Department of Biological Sciences Mount Holyoke College South Hadley Massachusetts USA

Abstract

AbstractThe mammalian placenta's interface with the parent is a richly vascularized tissue whose development relies upon communication between many different cell types within the uterine microenvironment. The uterine blood vessels of the interface are reshaped during pregnancy into wide‐bore, flaccid vessels that convey parental blood to the exchange region of the placenta. Invasive trophoblast as well as parental uterine macrophages and Natural Killer cells are involved in the stepwise remodeling of these vessels and their respective contributions to this crucial process are still being delineated. However, the earliest steps in arteriole remodeling are understudied as they are difficult to study in humans, and other species lack the deep trophoblast invasion that is so prominent a feature of placentation in humans. Here, we further characterize the rat, with deep hemochorial placentation akin to humans, as a model system in which to tease apart the earliest, relatively understudied events in spiral arteriole remodeling. We show that the rat uterine−placental interface increases in size and vascularity rapidly, before trophoblast invasion. The remodeling stages in the arterioles of the rat uterine–placental interface follow a sequence of anatomical changes similar to those in humans, and there are changes to the arterioles' muscular tunica media prior to the marked influx of immune cells. The rat is a tractable model in which to better understand the cell/cell interactions occurring in vivo in an intact tissue microenvironment over time.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3