Multi‐proteomic analyses of 5xFAD mice reveal new molecular signatures of early‐stage Alzheimer's disease

Author:

Lee Seulah1,Jang Kuk‐In2,Lee Hagyeong1,Jo Yeon Suk13,Kwon Dayoung1,Park Geuna1,Bae Sungwon1,Kwon Yang Woo1,Jang Jin‐Hyeok3,Oh Yong‐Seok3,Lee Chany2,Yoon Jong Hyuk1ORCID

Affiliation:

1. Neurodegenerative Diseases Research Group Korea Brain Research Institute Daegu Republic of Korea

2. Cognitive Science Research Group Korea Brain Research Institute Daegu Republic of Korea

3. Department of Brain‐Cognitive Science Daegu‐Gyeongbuk Institute of Science and Technology (DGIST) Daegu Republic of Korea

Abstract

AbstractAn early diagnosis of Alzheimer's disease is crucial as treatment efficacy is limited to the early stages. However, the current diagnostic methods are limited to mid or later stages of disease development owing to the limitations of clinical examinations and amyloid plaque imaging. Therefore, this study aimed to identify molecular signatures including blood plasma extracellular vesicle biomarker proteins associated with Alzheimer's disease to aid early‐stage diagnosis. The hippocampus, cortex, and blood plasma extracellular vesicles of 3‐ and 6‐month‐old 5xFAD mice were analyzed using quantitative proteomics. Subsequent bioinformatics and biochemical analyses were performed to compare the molecular signatures between wild type and 5xFAD mice across different brain regions and age groups to elucidate disease pathology. There was a unique signature of significantly altered proteins in the hippocampal and cortical proteomes of 3‐ and 6‐month‐old mice. The plasma extracellular vesicle proteomes exhibited distinct informatic features compared with the other proteomes. Furthermore, the regulation of several canonical pathways (including phosphatidylinositol 3‐kinase/protein kinase B signaling) differed between the hippocampus and cortex. Twelve potential biomarkers for the detection of early‐stage Alzheimer's disease were identified and validated using plasma extracellular vesicles from stage‐divided patients. Finally, integrin α‐IIb, creatine kinase M‐type, filamin C, glutamine γ‐glutamyltransferase 2, and lysosomal α‐mannosidase were selected as distinguishing biomarkers for healthy individuals and early‐stage Alzheimer's disease patients using machine learning modeling with approximately 79% accuracy. Our study identified novel early‐stage molecular signatures associated with the progression of Alzheimer's disease, thereby providing novel insights into its pathogenesis.

Funder

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3