Aging amplifies a gut microbiota immunogenic signature linked to heightened inflammation

Author:

Caetano‐Silva Maria Elisa12,Shrestha Akriti2,Duff Audrey F.3,Kontic Danica3,Brewster Patricia C.1,Kasperek Mikaela C.2,Lin Chia‐Hao1,Wainwright Derek A.4,Hernandez‐Saavedra Diego12,Woods Jeffrey A.12,Bailey Michael T.3,Buford Thomas W.56ORCID,Allen Jacob M.12ORCID

Affiliation:

1. Department of Health and Kinesiology University of Illinois at Urbana‐Champaign Urbana Illinois USA

2. Division of Nutritional Sciences University of Illinois at Urbana Champaign Urbana Illinois USA

3. Center for Microbial Pathogenesis Nationwide Children's Hospital Columbus Ohio USA

4. Departments of Cancer Biology and Neurological Surgery Loyola University Chicago, Stritch School of Medicine Maywood Illinois USA

5. Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine University of Alabama at Birmingham Birmingham Alabama USA

6. Birmingham/Atlanta VA GRECC Birmingham VA Medical Center Birmingham Alabama USA

Abstract

AbstractAging is associated with low‐grade inflammation that increases the risk of infection and disease, yet the underlying mechanisms remain unclear. Gut microbiota composition shifts with age, harboring microbes with varied immunogenic capacities. We hypothesized the gut microbiota acts as an active driver of low‐grade inflammation during aging. Microbiome patterns in aged mice strongly associated with signs of bacterial‐induced barrier disruption and immune infiltration, including marked increased levels of circulating lipopolysaccharide (LPS)‐binding protein (LBP) and colonic calprotectin. Ex vivo immunogenicity assays revealed that both colonic contents and mucosa of aged mice harbored increased capacity to activate toll‐like receptor 4 (TLR4) whereas TLR5 signaling was unchanged. We found patterns of elevated innate inflammatory signaling (colonic Il6, Tnf, and Tlr4) and endotoxemia (circulating LBP) in young germ‐free mice after 4 weeks of colonization with intestinal contents from aged mice compared with young counterparts, thus providing a direct link between aging‐induced shifts in microbiota immunogenicity and host inflammation. Additionally, we discovered that the gut microbiota of aged mice exhibited unique responses to a broad‐spectrum antibiotic challenge (Abx), with sustained elevation in Escherichia (Proteobacteria) and altered TLR5 immunogenicity 7 days post‐Abx cessation. Together, these data indicate that old age results in a gut microbiota that differentially acts on TLR signaling pathways of the innate immune system. We found that these age‐associated microbiota immunogenic signatures are less resilient to challenge and strongly linked to host inflammatory status. Gut microbiota immunogenic signatures should be thus considered as critical factors in mediating chronic inflammatory diseases disproportionally impacting older populations.

Funder

National Institute on Aging

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3