Deeper topsoils enhance ecosystem productivity and climate resilience in arid regions, but not in humid regions

Author:

Zhang Yakun1ORCID,Desai Ankur R.2ORCID,Xiao Jingfeng3ORCID,Hartemink Alfred E.1ORCID

Affiliation:

1. FD Hole Soils Lab, Department of Soil Science University of Wisconsin–Madison Madison Wisconsin USA

2. Department of Atmospheric and Oceanic Sciences University of Wisconsin–Madison Madison Wisconsin USA

3. Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham New Hampshire USA

Abstract

AbstractUnderstanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long‐term ecosystem productivity. We used nationwide observations (n = 2401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986–2021) across the conterminous USA. The relationship between topsoil depth and GPP is primarily associated with water availability, which is particularly significant in arid regions under grassland, shrubland, and cropland (r = .37, .32, .15, respectively, p < .0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 128 g C m−2 year−1 in arid regions (r = .33 and .45, p < .0001). Paired comparison of relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil type) constant showed that the positive control of topsoil depth on GPP occurred primarily in cropland (0.73, confidence interval of 0.57–0.84) and shrubland (0.75, confidence interval of 0.40–0.94). The GPP difference between deep and shallow topsoils was small and not statistically significant. Despite the positive control of topsoil depth on productivity in arid regions, its contribution (coefficients: .09–.33) was similar to that of heat (coefficients: .06–.39) but less than that of water (coefficients: .07–.87). The resilience of ecosystem productivity to climate extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most ecosystems, especially in shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil depth representation and moisture‐retention mechanisms are critical for carbon‐sequestration ecosystem services under a changing climate. These findings and relationships should also be included in Earth system models.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3