Efficiency comparison of apigenin-7-O-glucoside and trolox in antioxidative stress and anti-inflammatory properties

Author:

Wang Wei12,Yue Ru-Feng2,Jin Zhen12,He Li-Min12,Shen Rong3,Du Dan34,Tang You-Zhi12ORCID

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China

2. Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

3. Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China

4. Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China

Abstract

Abstract Objectives Chamomile has long been used as a medicinal plant due to its antioxidative and anti-inflammatory activity. Apigenin-7-O-glucoside (AG) is one of the major ethanol extract components from chamomile; however, the underlying mechanism remains unclear. Methods In this study, the antioxidant potential and the anti-inflammatory activities of AG were analysed and compared with those of trolox. We demonstrate the protective effects of AG on free radical-induced oxidative damage of DNA, proteins and erythrocytes. Flow cytometry assay was used to detect ROS production. Additionally, the expression of anti-oxidation-related and inflammation-related factors was detected by ELISA and Western blotting, respectively. Key findings AG and trolox showed different efficiency as antioxidant in different experimental systems. AG had similar effect as trolox to inhibit H2O2-induced ROS production in RAW264.7 cells, while exerted stronger inhibition against free radical-induced oxidative damage on erythrocytes than trolox. Interestingly, compared with trolox, AG also had stronger inhibitory effect on LPS-induced NF-κB/NLRP3/caspase-1 signalling in RAW246.7 cells. Conclusions These results suggest the potential of AG as a pharmaceutical drug for anti-oxidation and anti-inflammation, and the combined usage of AG and trolox might promote its efficacy. Our findings will provide new insights into the development of new drugs with antioxidative and anti-inflammatory functions.

Funder

National Natural Science Foundation of China

Guangdong Natural Science Funds for Distinguished Young Scholar

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3