Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats

Author:

Younis Nahla N1,Elsherbiny Nehal M23,Shaheen Mohamed A4ORCID,Elseweidy Mohamed M1ORCID

Affiliation:

1. Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt

2. Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

3. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia

4. Histology and Cell Biology department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt

Abstract

Abstract Objectives To investigate the protective effect of vanillin in cisplatin (CP)-induced nephrotoxicity in rats and elucidate the role of nrf-2 and its downstream antioxidant molecules. Methods Rats received vanillin (100 mg/kg orally) for 10 constitutive days and CP (7.5 mg/kg, once, ip) on day 6 of vanillin administration. Key findings Cisplatin suppressed body weight gain, increased serum urea and creatinine and renal malondialdehyde and nitric oxide while decreased renal total antioxidant capacity. Up-regulation of NADPH oxidase-4 (NOX-4) was marked in renal tissue of CP-treated rats along with down-regulation of the antioxidant genes (nuclear factor erythroid 2-related factor2 (NRF2) and haem oxygenase-1(HO-1)). Increased tumour necrosis factor-α and decreased interleukin-10 with increased myeloperoxidase activity were apparent in renal tissue of CP-treated rats along with marked tubular injury, neutrophil infiltration and increased apoptosis (caspase-3) and some degree of interstitial fibrosis. Vanillin prophylactic administration prevented the deterioration of kidney function, oxidative and nitrosative stress. It also suppressed NOX-4 and up-regulated NRF2 and HO-1 expression in renal tissue. Inflammation, apoptosis and tubular injury were also inhibited by vanillin. Conclusions The antioxidant mechanism by which vanillin protected against CP-induced nephrotoxicity involved the inhibition of NOX-4 along with the stimulation of Nrf2/HO-1 signalling pathway. These in turn inhibited inflammation and apoptosis.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3