Intelligent prediction of fatigue life of natural rubber considering strain ratio effect

Author:

Wang Xiaoli1ORCID,Liu Jingtao1

Affiliation:

1. School of Automobile and Transportation Engineering Guangdong Polytechnic Normal University Guangzhou China

Abstract

AbstractAn intelligent prediction model of rubber fatigue life considering strain ratios based on the support vector regression (SVR) and an improved sparrow search algorithm (ISSA) is proposed. In order to solve the problem that traditional methods may lead to unsatisfactory prediction results, we establish a prediction model based on SVR. To further improve the prediction accuracy, we utilize the ISSA algorithm to optimize various hyper‐parameters in the model. Fatigue tests of filled natural rubber on dumbbell‐type specimens are performed and applied to verify the effectiveness of the proposed model. The results show that the ISSA optimized SVR (ISSA‐SVR) model is superior in terms of prediction accuracy, convergence speed, and stability compared with SVR models using the grid search or some standard optimization algorithms. Furthermore, comparisons of some published related models demonstrate that the ISSA‐SVR has the most accurate predictive results, which gather within 1.5 times the dispersion lines.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3