Characterization of internal fatigue crack initiation in Ti‐6Al‐4V alloy via synchrotron radiation X‐ray computed tomography

Author:

Yoshinaka Fumiyoshi1ORCID,Nakamura Takashi2ORCID,Oguma Hiroyuki1ORCID,Fujimura Nao2ORCID,Takeuchi Akihisa3ORCID,Uesugi Masayuki3ORCID,Uesugi Kentaro3ORCID

Affiliation:

1. National Institute for Materials Science (NIMS) Tsukuba Japan

2. Division of Mechanical and Aerospace Engineering Hokkaido University Sapporo Japan

3. Japan Synchrotron Radiation Research Institute (JASRI), SPring‐8 Sayo‐gun Japan

Abstract

AbstractThe initiation of internal fatigue cracks in very high cycle fatigue of Ti‐6Al‐4V alloy was investigated using synchrotron radiation X‐ray computed tomography (SR‐CT). Micro‐CT detected 28 cracks that were distributed across the examined volume of Ф1.8 × L 2.5 mm. No apparent correlation was observed between the spatial distribution, initial lengths, and initiation lives of cracks. The crack growth rate of the facet‐sized crack varied widely; some cracks propagated rapidly, whereas no crack growth was observed for other cracks over a specific period of time after detection. Using nano‐CT, the several grain‐sized internal cracks and their microstructures were clearly and nondestructively visualized. In the field of view, many primary α phases were detected; however, no other cracks were observed. The multiple facet initiation site, which is commonly observed for titanium alloys, might not be due to the concurrently initiated facets but may be caused by the small crack growth accompanied by facet formation.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3