A numerical investigation of the interaction between interlaminar and intralaminar damages in a fatigued composite panel

Author:

Russo Angela1,Palumbo Concetta1,Riccio Aniello1

Affiliation:

1. Department of Engineering University of Campania “Luigi Vanvitelli” Aversa Italy

Abstract

AbstractThe fatigue behavior of composite materials is still a very challenging issue for the scientific community. So far, several numerical methodologies allow us to faithfully simulate the propagation of delamination due to fatigue. However, the reduction of material properties due to the applied cyclic load should be considered. The main objective of this work is to investigate the role of the material property degradation and the intralaminar damages on the propagation of delamination in composite laminates under fatigue loads. The numerical tool FT‐SMXB, based on the Paris Law and virtual crack closure technique, for the mimic of fatigue‐driven delamination, has been integrated with a user material subroutine, based on the generalized residual material property 7degradation model and the Hashin fatigue failure criteria. Typical aeronautical stiffened panel has been considered as test case. Matrix damages and strength degradation due to fatigue cycles have been found to influence the propagation of delamination.

Funder

Office of Naval Research

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3