Decoding bilingualism from resting‐state oscillatory network organization

Author:

Amoruso Lucia123ORCID,García Adolfo M.345,Pusil Sandra6,Timofeeva Polina17,Quiñones Ileana12,Carreiras Manuel127

Affiliation:

1. Basque Center on Cognition, Brain and Language (BCBL) San Sebastian Spain

2. Ikerbasque Basque Foundation for Science Bilbao Spain

3. Cognitive Neuroscience Center (CNC) Universidad de San Andrés Buenos Aires Argentina

4. Global Brain Health Institute University of California San Francisco San Francisco California USA

5. Departamento de Lingüística y Literatura, Facultad de Humanidades Universidad de Santiago de Chile Santiago Chile

6. Center for Cognitive and Computational Neuroscience Complutense University of Madrid Madrid Spain

7. Universidad del País Vasco (UPV/EHU) San Sebastian Spain

Abstract

AbstractCan lifelong bilingualism be robustly decoded from intrinsic brain connectivity? Can we determine, using a spectrally resolved approach, the oscillatory networks that better predict dual‐language experience? We recorded resting‐state magnetoencephalographic activity in highly proficient Spanish‐Basque bilinguals and Spanish monolinguals, calculated functional connectivity at canonical frequency bands, and derived topological network properties using graph analysis. These features were fed into a machine learning classifier to establish how robustly they discriminated between the groups. The model showed excellent classification (AUC: 0.91 ± 0.12) between individuals in each group. The key drivers of classification were network strength in beta (15–30 Hz) and delta (2–4 Hz) rhythms. Further characterization of these networks revealed the involvement of temporal, cingulate, and fronto‐parietal hubs likely underpinning the language and default‐mode networks (DMNs). Complementary evidence from a correlation analysis showed that the top‐ranked features that better discriminated individuals during rest also explained interindividual variability in second language (L2) proficiency within bilinguals, further supporting the robustness of the machine learning model in capturing trait‐like markers of bilingualism. Overall, our results show that long‐term experience with an L2 can be “brain‐read” at a fine‐grained level from resting‐state oscillatory network organization, highlighting its pervasive impact, particularly within language and DMN networks.

Funder

Ikerbasque, Basque Foundation for Science

European Commission

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Estatal de Investigación

Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile

Ministerio de Ciencia e Innovación

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3