Limited recovery of soil organic carbon and soil biophysical functions after old field restoration in an agricultural landscape

Author:

Parkhurst Tina12ORCID,Standish Rachel J.2,Prober Suzanne M.34

Affiliation:

1. Harry Butler Institute, Murdoch University Murdoch Western Australia Australia

2. School of Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia

3. CSIRO Environment Canberra Australian Capital Territory Australia

4. School of Biological Sciences The University of Western Australia Crawley Western Australia Australia

Abstract

AbstractThe conversion of woodland ecosystems to agricultural landscapes has led to unprecedented losses of biodiversity and ecosystem functioning globally. Unsustainable agricultural practices have contributed to the degradation of soil's physical and biogeochemical properties. Ecological restoration of unproductive agricultural land is imperative for reversing land degradation and ameliorating the degrading effects of agriculture on biodiversity and ecosystem functions. However, it is unclear to what extent common restoration activities, such as tree planting, can facilitate the recovery of ecosystem condition and in particular, improve soil physical, biogeochemical and biotic components. Here, we investigated how the cessation of cropping, followed by tree planting, affected soil carbon concentrations and key biophysical soil functions. Data were collected across 10 sites a decade after the replanting of woody species on old fields in semi‐arid Western Australia. We applied a chronosequence approach and measured soil functions in fallow cropland (restoration starting point), 10‐year‐old planted old fields and intact woodland reference sites (restoration target point). We stratified sampling between open areas and patches under trees in planted old fields and reference woodlands to account for inherent biophysical differences. Soils under planted trees recovered to some extent, having reduced soil compaction and higher soil penetration depth in comparison with the fallow cropland. However, soils under trees in planted old fields did not reach woodland reference conditions for these properties. Moreover, recovery was not evident for other soil physical, biogeochemical and biotic components such as soil organic carbon, soil moisture, leaf litter and woody debris decomposition rates. Limited recovery of soil functions may be at least partly explained by time lags associated with slow growth rates of planted trees in dry ecosystems. Our study shows that the legacy of cropping can persist over long timeframes in semi‐arid regions, with modest signs of woodland recovery beginning to emerge 10 years after tree planting.

Funder

Department of Education, Australian Government

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3