Revolutionizing indoor emergency evacuation prediction with machine learning: A Hand‐searching technique and content analysis on Random Forest algorithm

Author:

Syed Abdul Rahman Syed Ahmad Fadhli1,Abdul Maulud Khairul Nizam12ORCID,Mazlan Muhammad Fadhli Mustaqim2

Affiliation:

1. Earth Observation Centre, Institute of Climate Change (IPI) Universiti Kebangsaan Malaysia Bangi Selangor Malaysia

2. Department of Civil Engineering, Faculty of Engineering & Built Environment Universiti Kebangsaan Malaysia Bangi Selangor Malaysia

Abstract

AbstractMachine learning and emergency evacuation prediction share a meaningful association in the context of the Industrial Revolution 4.0 era, given that machine learning can potentially enhance emergency evacuation prediction processes. Machine learning has the potential to revolutionise emergency evacuation prediction by providing a data‐driven approach that aids decision‐making and response time in emergencies. The complexity of emergency situations can lead to tragic accidents, as individual behaviour heavily influences evacuation time. While some researchers have explored emergency evacuation, existing computer evacuation models lack detailed analysis. To address this gap, this study focuses on reviewing the Random Forest algorithm, an advanced machine learning algorithm based on Decision Trees, in the application of forecasting emergency evacuation time. Through a qualitative research approach using the innovative Hand‐searching technique, we conducted a systematic review employing Content Analysis Theory. Multiple sources were examined, including Google Scholar, Science Direct, Scopus, and Universiti Kebangsaan Malaysia e‐Journal System. The study's findings shed light on the performance, prediction factors, advantages, and limitations of Random Forest in identifying impacts during an emergency evacuation. These insights hold significant implications for emergency responders, building designers, and policymakers.

Funder

Universiti Kebangsaan Malaysia

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Management Information Systems

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A passage time prediction method of gates for passengers in subway stations;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3