Hybridization in the Anthropocene – how pollution and climate change disrupt mate selection in freshwater fish

Author:

Ramirez‐Duarte Wilson F.1ORCID,Moran Benjamin M.2,Powell Daniel L.2,Bank Claudia34,Sousa Vitor C.5,Rosenthal Gil G.67,Schumer Molly2,Rochman Chelsea M.1

Affiliation:

1. Department of Ecology & Evolutionary Biology University of Toronto 25 Willcocks Street, Room 3055 Toronto Ontario M5S 3B2 Canada

2. Department of Biology Stanford University 327 Campus Drive Stanford CA 94305 USA

3. Institute of Ecology and Evolution Universität Bern Baltzerstrasse 6 Bern 3012 Switzerland

4. Swiss Institute for Bioinformatics Lausanne 1015 Switzerland

5. Centre for Ecology, Evolution and Environmental Changes University of Lisbon Campo Grande 016 Lisbon 1749‐016 Portugal

6. Department of Biology Università degli Studi di Padova Padova 35131 Italy

7. Centro de Investigaciones Científicas de las Huastecas ‘Aguazarca’ Calnali Hgo 43244 Mexico

Abstract

ABSTRACTChemical pollutants and/or climate change have the potential to break down reproductive barriers between species and facilitate hybridization. Hybrid zones may arise in response to environmental gradients and secondary contact between formerly allopatric populations, or due to the introduction of non‐native species. In freshwater ecosystems, field observations indicate that changes in water quality and chemistry, due to pollution and climate change, are correlated with an increased frequency of hybridization. Physical and chemical disturbances of water quality can alter the sensory environment, thereby affecting chemical and visual communication among fish. Moreover, multiple chemical compounds (e.g. pharmaceuticals, metals, pesticides, and industrial contaminants) may impair fish physiology, potentially affecting phenotypic traits relevant for mate selection (e.g. pheromone production, courtship, and coloration). Although warming waters have led to documented range shifts, and chemical pollution is ubiquitous in freshwater ecosystems, few studies have tested hypotheses about how these stressors may facilitate hybridization and what this means for biodiversity and species conservation. Through a systematic literature review across disciplines (i.e. ecotoxicology and evolutionary biology), we evaluate the biological interactions, toxic mechanisms, and roles of physical and chemical environmental stressors (i.e. chemical pollution and climate change) in disrupting mate preferences and inducing interspecific hybridization in freshwater fish. Our study indicates that climate change‐driven changes in water quality and chemical pollution may impact visual and chemical communication crucial for mate choice and thus could facilitate hybridization among fishes in freshwater ecosystems. To inform future studies and conservation management, we emphasize the importance of further research to identify the chemical and physical stressors affecting mate choice, understand the mechanisms behind these interactions, determine the concentrations at which they occur, and assess their impact on individuals, populations, species, and biological diversity in the Anthropocene.

Funder

Human Frontier Science Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3