A Differential Diffusion Theory for Participating Media

Author:

Cen Yunchi1ORCID,Li Chen1,Li Frederick W. B.2ORCID,Yang Bailin3,Liang Xiaohui1ORCID

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems Beihang University China

2. University of Durham United Kingdom

3. Zhejiang Gongshang University China

Abstract

AbstractWe present a novel approach to differentiable rendering for participating media, addressing the challenge of computing scene parameter derivatives. While existing methods focus on derivative computation within volumetric path tracing, they fail to significantly improve computational performance due to the expensive computation of multiply‐scattered light. To overcome this limitation, we propose a differential diffusion theory inspired by the classical diffusion equation. Our theory enables real‐time computation of arbitrary derivatives such as optical absorption, scattering coefficients, and anisotropic parameters of phase functions. By solving derivatives through the differential form of the diffusion equation, our approach achieves remarkable speed gains compared to Monte Carlo methods. This marks the first differentiable rendering framework to compute scene parameter derivatives based on diffusion approximation. Additionally, we derive the discrete form of diffusion equation derivatives, facilitating efficient numerical solutions. Our experimental results using synthetic and realistic images demonstrate the accurate and efficient estimation of arbitrary scene parameter derivatives. Our work represents a significant advancement in differentiable rendering for participating media, offering a practical and efficient solution to compute derivatives while addressing the limitations of existing approaches.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference34 articles.

1. Light reflection functions for simulation of clouds and dusty surfaces

2. ChenW. GaoJ. LingH. SmithE. J. LehtinenJ. JacobsonA. FidlerS.: Learning to predict 3d objects with an interpolation-based differentiable renderer.arXiv preprint arXiv:1908.01210(2019). 3

3. A quantized-diffusion model for rendering translucent materials

4. Light diffusion in multi-layered translucent materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3