Remotely sensed tree height and density explain global gliding vertebrate richness

Author:

Wagner Benjamin1ORCID,Kreft Holger234ORCID,Nitschke Craig R.1ORCID,Schrader Julian25ORCID

Affiliation:

1. School of Agriculture, Food and Ecosystem Sciences, University of Melbourne Richmond VIC Australia

2. Department of Biodiversity, Macroecology and Biogeography, University of Goettingen Goettingen Germany

3. Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen Göttingen Germany

4. Campus Institute Data Science (CIDAS), University of Goettingen Göttingen Germany

5. School of Natural Sciences, Macquarie University NSW Australia

Abstract

In vertebrates, gliding evolved as a mode of energy‐efficient locomotion to move between trees. Gliding vertebrate richness is hypothesised to increase with tree height and decrease with tree density but empirical evidence for this is scarce, especially at a global scale. Here, we test the ability of tree height and density to explain species richness of gliding vertebrates globally compared to richness of all vertebrates, while controlling for biogeographical and climatic factors. We compiled a global database of 193 gliding amphibians, mammals and reptiles and created maps of species richness from extent‐of‐occurrence range maps. We paired species richness of gliding vertebrates with spatial estimates of global tree height and density and biogeographical regions (BGRs) as covariates to account for ecological and historical differences among global regions. We used univariate linear and multivariate generalised linear mixed‐effect models to evaluate relationships between species richness and tree height and density, and the interaction between both variables. We found that richness of all gliding vertebrate species increased significantly with tree height, while results for richness of gliding amphibians, mammals and reptiles alone indicated mixed responses especially among different BGRs. Mixed‐effect models mirrored these results for richness of all gliding species combined, while also revealing the mixed response to tree height and denisyt of richness of gliding amphibians, mammals and reptiles. Richness of all vertebrate species – gliding and non‐gliding – also increased with tree height and density, but at a lesser rate than richness of gliding vertebrates, indicating a greater influence of forest structure on richness patterns of gliding vertebrates. Our results support hypotheses stating that gliding in vertebrates evolved globally in tall forests as energy‐efficient locomotion between trees, and provide further evidence for the importance of forest structure to explain the distribution of gliding vertebrates.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Reference70 articles.

1. Evolution of arid Australia and its consequences for vertebrates;Archer M.;Vertebrate zoogeography and evolution in Australasia,1984

2. Fitting Linear Mixed-Effects Models Usinglme4

3. Why are there so many species in the tropics?

4. Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3