High‐dimensional macroeconomic forecasting and variable selection via penalized regression

Author:

Uematsu Yoshimasa1,Tanaka Shinya2

Affiliation:

1. Department of Economics and Management, Tohoku University, 27-1 Kawauchi, Aobaku, Sendai, 980-8576, Japan

2. Department of Economics, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo, 150-8366, Japan

Abstract

Summary This study examines high-dimensional forecasting and variable selection via folded-concave penalized regressions. The penalized regression approach leads to sparse estimates of the regression coefficients and allows the dimensionality of the model to be much larger than the sample size. First, we discuss the theoretical aspects of a penalized regression in a time series setting. Specifically, we show the oracle inequality with ultra-high-dimensional time-dependent regressors. Then we show the validity of the penalized regression using two empirical applications. First, we forecast quarterly US gross domestic product data using a high-dimensional monthly data set and the mixed data sampling (MIDAS) framework with penalization. Second, we examine how well the penalized regression screens a hidden portfolio based on a large New York Stock Exchange stock price data set. Both applications show that a penalized regression provides remarkable results in terms of forecasting performance and variable selection.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3