Using random forest algorithm to improve Ceutorhynchus napi GYLL. (Coleoptera: Curculionidae) occurrence forecasting

Author:

Legros Quentin12ORCID,Pontet Célia3,Robert Céline1

Affiliation:

1. Terres Inovia Rennes France

2. Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) Montpellier France

3. Terres Inovia Bazièges France

Abstract

AbstractRandom Forest algorithm was used to predict on‐field presence probability of rape stem weevil in France as a function of climatic and landscape variables, based on a long‐term and multisite data set. A first version of the model included a set of 342 variables. A variable selection procedure was used to retain only the 15 most influential variables without significant drop in predicting performances. Most retained variables were temperature related and results showed that the sum of maximum daily temperature above 9°C during the week preceding observation was the predictor with the largest influence on rape stem weevil occurrence. This model reached a mean AUC of 0.77 and outperformed some other published models. As such, this model can help farmers to precisely time insecticide application. It has been integrated in a decision support system freely available in the Terres Inovia (French applied agricultural research and development institute dedicated to oilseed crops) website.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3