Calcium isotope fractionation by intracellular amorphous calcium carbonate (ACC) forming cyanobacteria

Author:

Mehta Neha12ORCID,Bradbury Harold34ORCID,Benzerara Karim1

Affiliation:

1. Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 Institut de Minéralogie, de Physique Des Matériaux et de Cosmochimie (IMPMC) Paris France

2. Department of Geosciences, Environment and Society Université Libre de Bruxelles Brussels Belgium

3. Department of Earth, Ocean and Atmospheric Sciences University of British Columbia Vancouver British Columbia Canada

4. Department of Earth Sciences University of Cambridge Cambridge UK

Abstract

AbstractThe formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC‐forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC‐forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to −0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC‐forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC‐forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.

Funder

Agence Nationale de la Recherche

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3