Disequilibrium oxygen isotope distribution among aqueously altered minerals in Ryugu asteroid returned samples

Author:

Kita Noriko T.1ORCID,Kitajima Kouki1,Nagashima Kazuhide2ORCID,Kawasaki Noriyuki3ORCID,Sakamoto Naoya4,Fujiya Wataru5ORCID,Abe Yoshinari6,Aléon Jérôme7ORCID,Alexander Conel M. O'D.8,Amari Sachiko910,Amelin Yuri11,Bajo Ken‐ichi3,Bizzarro Martin12,Bouvier Audrey13ORCID,Carlson Richard W.8,Chaussidon Marc14,Choi Byeon‐Gak15,Dauphas Nicolas16,Davis Andrew M.16,Di Rocco Tommaso17,Fukai Ryota18ORCID,Gautam Ikshu19,Haba Makiko K.19ORCID,Hibiya Yuki20,Hidaka Hiroshi21,Homma Hisashi22,Hoppe Peter23,Huss Gary R.2ORCID,Ichida Kiyohiro24,Iizuka Tsuyoshi25ORCID,Ireland Trevor R.26,Ishikawa Akira19,Itoh Shoichi27,Kleine Thorsten28,Komatani Shintaro24,Krot Alexander N.2ORCID,Liu Ming‐Chang2930,Masuda Yuki19ORCID,McKeegan Kevin D.29,Morita Mayu24,Motomura Kazuko31,Moynier Frédéric14,Nakai Izumi32,Nguyen Ann33ORCID,Nittler Larry8,Onose Morihiko24,Pack Andreas17,Park Changkun34ORCID,Piani Laurette35,Qin Liping36,Russell Sara S.37ORCID,Schönbächler Maria38ORCID,Tafla Lauren29,Tang Haolan29,Terada Kentaro39,Terada Yasuko40,Usui Tomohiro18,Wada Sohei3,Wadhwa Meenakshi41,Walker Richard J.42ORCID,Yamashita Katsuyuki43,Yin Qing‐Zhu44,Yokoyama Tetsuya19,Yoneda Shigekazu45,Young Edward D.29ORCID,Yui Hiroharu46,Zhang Ai‐Cheng47ORCID,Nakamura Tomoki48,Naraoka Hiroshi49ORCID,Noguchi Takaaki27ORCID,Okazaki Ryuji49,Sakamoto Kanako18,Yabuta Hikaru50,Abe Masanao18,Miyazaki Akiko18,Nakato Aiko18,Nishimura Masahiro18,Okada Tatsuaki18,Yada Toru18,Yogata Kasumi18,Nakazawa Satoru18,Saiki Takanao18,Tanaka Satoshi18,Terui Fuyuto51,Tsuda Yuichi18,Watanabe Sei‐ichiro21,Yoshikawa Makoto18,Tachibana Shogo52ORCID,Yurimoto Hisayoshi34ORCID

Affiliation:

1. WiscSIMS, Department of Geoscience University of Wisconsin‐Madison Madison Wisconsin USA

2. Hawai'i Institute of Geophysics and Planetology University of Hawai'i at Mānoa Honolulu Hawaii USA

3. Department of Natural History Sciences Hokkaido University Sapporo Japan

4. Isotope Imaging Laboratory, Creative Research Institution Hokkaido University Sapporo Japan

5. Faculty of Science Ibaraki University Mito Japan

6. Graduate School of Engineering Materials Science and Engineering Tokyo Denki University Tokyo Japan

7. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Museum National d'Histoire Naturelle Centre National de la Re‐ cherche Scientifique Unité Mixte de Recherche 7590, IRD Paris France

8. Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA

9. McDonnell Center for the Space Sciences and Physics Department Washington University St. Louis Missouri USA

10. Geochemical Research Center The University of Tokyo Tokyo Japan

11. Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

12. Centre for Star and Planet Formation, Globe Institute University of Copenhagen Copenhagen K Denmark

13. Bayerisches Geoinstitut Universität Bayreuth Bayreuth Germany

14. Institut de Physique du Globe de Paris Centre National de la Recherche Scientifique, Université Paris Cité Paris France

15. Department of Earth Science Education Seoul National University Seoul Republic of Korea

16. Department of the Geophysical Sciences and Enrico Fermi Institute The University of Chicago Chicago Illinois USA

17. Faculty of Geosciences and Geography University of Göttingen Göttingen Germany

18. Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan

19. Department of Earth and Planetary Sciences Tokyo Institute of Technology Tokyo Japan

20. Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

21. Department of Earth and Planetary Sciences Nagoya University Nagoya Japan

22. Osaka Application Laboratory Rigaku Corporation Osaka Japan

23. Max Planck Institute for Chemistry Mainz Germany

24. Analytical Technology Horiba Techno Service Co. Ltd. Kyoto Japan

25. Department of Earth and Planetary Science The University of Tokyo Tokyo Japan

26. School of Earth and Environmental Sciences The University of Queensland St. Lucia Qld Australia

27. Division of Earth and Planetary Sciences Kyoto University Kyoto Japan

28. Max Planck Institute for Solar System Research Göttingen Germany

29. Department of Earth, Planetary, and Space Sciences University of California, Los Angeles Los Angeles California USA

30. Lawrence Livermore National Laboratory Livermore California USA

31. Thermal Analysis Rigaku Corporation Tokyo Japan

32. Department of Applied Chemistry Tokyo University of Science Tokyo Japan

33. Astromaterials Research and Exploration Science Division National Aeronautics and Space Administration Johnson Space Center Houston Texas USA

34. Division of Earth‐System Sciences Korea Polar Research Institute Incheon Republic of Korea

35. Centre de Recherches Pétrographiques et Géochimiques Centre National de la Recherche Scientifique–Université de Lorraine Nancy France

36. School of Earth and Space Sciences University of Science and Technology of China Hefei Anhui China

37. Department of Earth Sciences Natural History Museum London UK

38. Institute for Geochemistry and Petrology, Department of Earth Sciences Eidgenössische Technische Hochschule Zürich Zürich Switzerland

39. Department of Earth and Space Science Osaka University Osaka Japan

40. Spectroscopy and Imaging Japan Synchrotron Radiation Research Institute Hyogo Japan

41. School of Earth and Space Exploration Arizona State University Tempe Arizona USA

42. Department of Geology University of Maryland College Park Maryland USA

43. Graduate School of Natural Science and Technology Okayama University Okayama Japan

44. Department of Earth and Planetary Sciences University of California, Davis Davis California USA

45. Department of Science and Engineering National Museum of Nature and Science Tsukuba Japan

46. Department of Chemistry Tokyo University of Science Tokyo Japan

47. School of Earth Sciences and Engineering Nanjing University Nanjing China

48. Department of Earth Science Tohoku University Sendai Japan

49. Department of Earth and Planetary Sciences Kyushu University Fukuoka Japan

50. Earth and Planetary Systems Science Program Hiroshima University Higashi‐Hiroshima Japan

51. Kanagawa Institute of Technology Atsugi Japan

52. UTokyo Organization for Planetary and Space Science University of Tokyo Tokyo Japan

Abstract

AbstractOxygen 3‐isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3‐isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, using a secondary ion mass spectrometer (SIMS). Magnetite was analyzed by using a lower primary ion energy that reduced instrumental biases due to the crystal orientation effect. We found two groups of magnetite data identified from the SIMS pit morphologies: (1) higher δ18O (from 3‰ to 7‰) and ∆17O (~2‰) with porous SIMS pits mostly from spherulitic magnetite, and (2) lower δ18O (~ −3‰) and variable ∆17O (0‰–2‰) mostly from euhedral magnetite. Dolomite and breunnerite analyses were conducted using multi‐collection Faraday cup detectors with precisions ≤0.3‰. The instrumental bias correction was applied based on carbonate compositions in two ways, using Fe and (Fe + Mn) contents, respectively, because Ryugu dolomite contains higher amounts of Mn than the terrestrial standard. Results of dolomite and breunnerite analyses show a narrow range of ∆17O; 0.0‰–0.3‰ for dolomite in A0058 and 0.2‰–0.8‰ for dolomite and breunnerite in C0002. The majority of breunnerite, including large ≥100 μm grains, show systematically lower δ18O (~21‰) than dolomite (25‰–30‰ and 23‰–27‰ depending on the instrumental bias corrections). The equilibrium temperatures between magnetite and dolomite from the coarse‐grained lithology in A0058 are calculated to be 51 ± 11°C and 78 ± 14°C, depending on the instrumental bias correction scheme for dolomite; a reliable temperature estimate would require a Mn‐bearing dolomite standard to evaluate the instrumental bias corrections, which is not currently available. These results indicate that the oxygen isotope ratios of aqueous fluids in the Ryugu parent asteroid were isotopically heterogeneous, either spatially, or temporary. Initial water ice accreted to the Ryugu parent body might have ∆17O > 2‰ that was melted and interacted with anhydrous solids with the initial ∆17O < 0‰. In the early stage of aqueous alteration, spherulitic magnetite and calcite formed from aqueous fluid with ∆17O ~ 2‰ that was produced by isotope exchange between water (∆17O > 2‰) and anhydrous solids (∆17O < 0‰). Dolomite and breunnerite, along with some magnetite, formed at the later stage of aqueous alteration under higher water‐to‐rock ratios where the oxygen isotope ratios were nearly at equilibrium between fluid and solid phases. Including literature data, δ18O of carbonates decreased in the order calcite, dolomite, and breunnerite, suggesting that the temperature of alteration might have increased with the degree of aqueous alteration.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3