Unusual sources of fossil micrometeorites deduced from relict chromite in the small size fraction in ~467 Ma old limestone

Author:

Heck Philipp R.12ORCID,Schmitz Birger13,Ritter Xenia1,Rout Surya S.1245ORCID,Kita Noriko T.6,Defouilloy Céline7,Keating Katarina12,Eisenstein Kevin1,Terfelt Fredrik3

Affiliation:

1. Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, Field Museum of Natural History Chicago Illinois USA

2. Department of the Geophysical Sciences University of Chicago Chicago Illinois USA

3. Astrogeobiology Laboratory, Department of Physics Lund University Lund Sweden

4. Homi Bhabha National Institute Training School Complex, Anushaktinagar Mumbai 400094 India

5. School of Earth and Planetary Sciences National Institute of Science Education and Research, Jatani Khordha 752050 Odisha India

6. WiscSIMS, Department of Geoscience University of Wisconsin Madison Wisconsin USA

7. Cameca Gennevilliers France

Abstract

ABSTRACTExtraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment‐dispersed extraterrestrial chrome‐spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre‐LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment‐dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy‐based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome‐spinel from other time windows.

Funder

Field Museum

National Science Foundation

Tawani Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3