Campo del Cielo modeling and comparison with observations: II. Funnels and craters

Author:

Luther R.1ORCID,Schmalen A.12ORCID,Artemieva N.13ORCID

Affiliation:

1. Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science Berlin Germany

2. Universität Trier Trier Germany

3. Planetary Science Institute Tucson Arizona USA

Abstract

AbstractThe Campo del Cielo impact structure exhibits several penetration funnels and impact craters. Here, we model the formation of these funnels with pre‐impact conditions consistent with the results of meteoroid entry models. We study vertical impacts to find the dependence of funnel geometry (depth, diameter) on impact velocity and target porosity. At velocities above 1 km s−1, we observe strong deformation of the projectile and transformation of funnels into regular impact craters. We also use 3‐D impact models to study oblique impacts and find that in the case of impact angles <25° to the horizon, the projectile bounces off the target. Instead of a funnel, an elongated groove forms, while the fragmented projectile escapes and moves farther downrange. At steeper impact angles, funnels form with the projectile at its tip. Early interpretations of the Campo del Cielo impact angle at 9–10° were based on (i) an oversimplified atmospheric model allowing “correct” strewn field elongation and (ii) the results of excavation in which the sloping boundary between breccia‐like materials and infilling loess was interpreted as a true crater floor and its slope was equated to the impact angle. As our models show, the projectile trajectory within the target is not a straight line, and the angle to horizon changes from a steep one at the impact point to zero and then to a negative value (the projectile is moving upward). We also model two impact craters (Hoyo de la Cañada and Laguna Negra) created by high‐velocity fragments to demonstrate the projectile remnants ricochet in the downrange direction.

Funder

European Space Agency

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3