Lactic acid bacteria and spoilage bacteria: Their interactions in Escherichia coliO157:H7 biofilms on food contact surfaces and implications for beef contamination

Author:

Nan Yuchen1,Rodas‐Gonzalez Argenis2ORCID,Stanford Kim3ORCID,Nadon Celine4,Yang Xianqin5,McAllister Tim16,Narváez‐Bravo Claudia1ORCID

Affiliation:

1. Department of Food and Human Nutritional Science University of Manitoba Winnipeg Canada

2. Department of Animal Science University of Manitoba Winnipeg Canada

3. Department of Biological Sciences University of Lethbridge Lethbridge Canada

4. National Microbiology Laboratory Public Health Agency of Canada Winnipeg Canada

5. Agriculture and Agri‐Food Canada Lacombe Research and Development Centre Lacombe Canada

6. Agriculture and Agri‐Food Canada Lethbridge Research and Development Centre Lethbridge Canada

Abstract

AbstractThis research explores the interaction between Shiga toxin‐producing Escherichia coli (STEC) O157:H7 and bacteria species commonly found in beef processing environments, specifically Carnobacterium, Lactobacillus, Comamonas, Raoultella, and Pseudomonas. The study investigated how various environmental conditions impact the formation of biofilms and the ability of O157:H7 to transfer from multispecies biofilm onto beef surfaces. For this purpose, a mixture of lactic acid bacteria (LAB), spoilage bacteria (106 CFU/mL), and E. coli O157 (103 CFU/mL) were combined as follows: LAB (T1): Carnobacterium piscicola + Lactobacillus bulgaricus + O157:H7, an spoilage bacteria (T2): Comamonas koreensis + Raoultella terrigena + O157:H7, an spoilage bacteria (T3): Pseudomonas aeruginosa + C. koreensis strain + O157:H7 and only O157:H7 as control (T4). Multispecies biofilms were developed on thermoplastic polyurethane (TPU) and stainless steel (SS) coupons at 10 and 25°C for 6 days, washed and stored for 6, 30, and 60 days at wet (60%–90% RH) and dry (20%–50%, RH) conditions. To evaluate O157:H7 transfer, beef cubes (3 × 3 × 1 cm) were placed on the coupons, followed by a 50‐g weight (7.35 kPa). The experiment was repeated three times in triplicate for each strain combination. Results demonstrate that biofilms formed at 10°C were generally weaker (less biomass) than those at 25°C. Regardless of temperature, more viable O157:H7 cells were transferred to beef from moist biofilms on TPU surfaces. At 25°C, T3 biofilm exhibited the lowest O157:H7 transfer to beef by 1.44 log10 CFU/cm2 (p < 0.01). At 10°C, none of the multispecies biofilm (T1–T3) affected the number of O157:H7 transfers to beef (p > 0.05). Notably, O157:H7 was not detected on food contact surfaces with 30 and 60‐day‐old dry biofilms (T1–T4). Through enrichment, E. coli O157:H7 was recovered from multispecies biofilms T1, T2, and T3. Findings from this study imply that multispecies biofilms contribute to the persistence of O157:H7 under dry conditions, regardless of temperature. These results underscore the intricate influence of multiple environmental factors—including surface type, biofilm age, humidity, temperature, and the presence of other bacterial species—on the risk of beef contamination facilitated by biofilms.

Funder

Beef Cattle Research Council

Mitacs

Publisher

Wiley

Subject

Microbiology,Food Science,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3