Trypanosoma cruzi cleaves galectin-3 N-terminal domain to suppress its innate microbicidal activity

Author:

Pineda M12ORCID,Corvo L2,Callejas-Hernández F2ORCID,Fresno M2,Bonay P2

Affiliation:

1. Institute of Infection, College of Medical, Glasgow, UK

2. Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Summary Galectin-3 is the best-characterized member of galectins, an evolutionary conserved family of galactoside-binding proteins that play central roles in infection and immunity, regulating inflammation, cell migration and cell apoptosis. Differentially expressed by cells and tissues with immune privilege, they bind not only to host ligands, but also to glycans expressed by pathogens. In this regard, we have previously shown that human galectin-3 recognizes several genetic lineages of the protozoan parasite Trypanosoma cruzi, the causal agent of Chagas’ disease or American trypanosomiasis. Herein we describe a molecular mechanism developed by T. cruzi to proteolytically process galectin-3 that generates a truncated form of the protein lacking its N-terminal domain – required for protein oligomerization – but still conserves a functional carbohydrate recognition domain (CRD). Such processing relies on specific T. cruzi proteases, including Zn-metalloproteases and collagenases, and ultimately conveys profound changes in galectin-3-dependent effects, as chemical inhibition of parasite proteases allows galectin-3 to induce parasite death in vitro. Thus, T. cruzi might have established distinct mechanisms to counteract galectin-3-mediated immunity and microbicide properties. Interestingly, non-pathogenic T. rangeli lacked the ability to cleave galectin-3, suggesting that during evolution two genetically similar organisms have developed different molecular mechanisms that, in the case of T. cruzi, favoured its pathogenicity, highlighting the importance of T. cruzi proteases to avoid immune mechanisms triggered by galectin-3 upon infection. This study provides the first evidence of a novel strategy developed by T. cruzi to abrogate signalling mechanisms associated with galectin-3-dependent innate immunity.

Funder

Fundación Banco Santander

Seventh Framework Programme

Fundación Ramón Areces

Fondo de Investigaciones Sanitarias FIS

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3