Genetic basis of ecologically relevant body shape variation among four genera of cichlid fishes

Author:

DeLorenzo Leah1ORCID,Mathews Destiny1,Brandon A. Allyson1,Joglekar Mansi1,Carmona Baez Aldo2ORCID,Moore Emily C.23ORCID,Ciccotto Patrick J.24,Roberts Natalie B.2,Roberts Reade B.2ORCID,Powder Kara E.1ORCID

Affiliation:

1. Department of Biological Sciences Clemson University Clemson South Carolina USA

2. Department of Biological Sciences, and Genetics and Genomics Academy North Carolina State University Raleigh North Carolina USA

3. Department of Biological Sciences University of Montana Missoula Montana USA

4. Department of Biology Warren Wilson College Swannanoa North Carolina USA

Abstract

AbstractDivergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclimasp.×Aulonocarasp. andLabidochromissp.×Labeotropheussp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic‐pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2–8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.

Funder

Arnold and Mabel Beckman Foundation

National Institute of Dental and Craniofacial Research

National Institute of General Medical Sciences

National Science Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3