Spatial, seasonal and climatic drivers of suspended sediment atop Great Bahama Bank

Author:

Lopez‐Gamundi Cecilia1ORCID,Barnes Brian B.2ORCID,Bakker Anna C.1ORCID,Harris Paul (Mitch)1ORCID,Eberli Gregor P.1ORCID,Purkis Sam J.1ORCID

Affiliation:

1. Department of Marine Geosciences, CSL – Center for Carbonate Research, Rosenstiel School of Marine and Atmospheric Science University of Miami Miami Florida USA

2. College of Marine Science University of South Florida St. Petersburg Florida USA

Abstract

ABSTRACTSuspension is the key mechanism by which fine‐grained sediment (≤125 μm) is winnowed and transported across shallow‐water carbonate platforms into adjacent deep waters. Unlike sliding and saltation, which deliver sedimentary structures via bedload, the sedimentological signature of suspended sediment is more cryptic. This study focuses on suspended sediment, and its drivers – wind, waves and tides – to better constrain the processes responsible for the transport of fine‐grained sediments. By building forward from remote sensing algorithms developed for deep‐waters, sediment suspension in the shallow water column can be mapped from satellite. By applying machine learning to Moderate Resolution Imaging Spectroradiometer data for Great Bahama Bank, this study demonstrates how the drivers of sediment suspension change over 18 years across this 100 000 km2 carbonate platform. Through time, both seasonal patterns of suspension, as well as those induced by El Niño‐Southern Oscillation and, more subtly, the Atlantic Meridional Overturning Circulation were tracked. El Niño‐Southern Oscillation modulates wind‐induced currents, while Atlantic Meridional Overturning Circulation affects local sea level. Across space, this study shows how the eastern margin of Great Bahama Bank, which is traditionally considered to be wind‐dominated, primarily owes its suspended sediment to tidal currents focused between islands. Sediment suspension across the leeward margin of Great Bahama Bank, meanwhile, can be attributed to wind‐induced currents and waves. The authors consider this work a step towards delivering a quantitative, reproducible, process‐based understanding of sediment suspension atop carbonate platforms using Earth observation data.

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3