Spinocerebellar ataxia type 15 caused by missense variants in the ITPR1 gene

Author:

Gazulla José1ORCID,Bellosta‐Diago Elena2,Izquierdo‐Alvarez Silvia3,Berciano José4

Affiliation:

1. Department of Neurology Hospital Universitario Miguel Servet Zaragoza Spain

2. Department of Neurology Hospital Clínico Universitario Lozano Blesa Zaragoza Spain

3. Section of Genetics, Department of Clinical Biochemistry Hospital Universitario Miguel Servet Zaragoza Spain

4. Department of Neurology Hospital Universitario Marqués de Valdecilla (IDIVAL), University of Cantabria, CIBERNED Santander Spain

Abstract

AbstractBackground and purposeSpinocerebellar ataxia type 15 (SCA15) is a degenerative, adult onset autosomal dominant cerebellar ataxia, caused almost exclusively by deletions in the inositol 1,4,5 triphosphate receptor type 1 (ITPR1) gene (ITPR1). ITPR1 mediates calcium release from the endoplasmic reticulum, and particularly abounds in Purkinje cells. It plays a pivotal role in excitatory and inhibitory actions on Purkinje cells, and alterations in their balance cause cerebellar dysfunction in ITPR1 knockout mice. To date, only two single missense mutations have been reported to cause SCA15. They were considered pathogenic because cosegregation occurred with disease, and haploinsufficiency was hypothesized as their pathogenic mechanism.MethodsIn this study, three Caucasian kindreds with different heterozygous missense variants in ITPR1 are reported. The main clinical manifestation was a slowly progressive gait ataxia with onset after 40 years of age, with chorea in two patients and hand tremor in another one, concordant with manifestations found in SCA15.ResultsThe three missense variants identified in ITPR1 were c.1594G>A; p.(Ala532Thr) in Kindred A, c.56C>T; p.(Ala19Val) in Kindred B, and c.256G>A; p.(Ala86Thr) in Kindred C. Every variant was labelled as of unknown significance; however, each one cosegregated with disease and was predicted to be pathogenic by in silico tests.ConclusionsThe three ITPR1 missense variants found in this study exhibited cosegregation with disease, a result that sustains their pathogenicity. Further studies are needed to confirm the role of missense mutations in SCA15.

Publisher

Wiley

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3