Identification of autophagy‐related genes in diabetic foot ulcer based on bioinformatic analysis

Author:

Li Dong‐Ling1,Ding Xin‐Yi2,Long Juan1,He Qiao‐Ling3,Zeng Qing‐Xiang1,Lu Na1,Zou Meng‐Chen1ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, Nanfang Hospital Southern Medical University Guangzhou China

2. School of Public Health Southern Medical University Guangzhou China

3. Department of Endocrinology Central Hospital of Zengcheng District Guangzhou China

Abstract

AbstractDiabetic foot ulcer (DFU) complications involve autophagy dysregulation. This study aimed to identify autophagy‐related bioindicators in DFU. Differentially expressed genes (DEGs) between DFU and healthy samples were analysed from the Gene Expression Omnibus (GEO) datasets, GSE7014 and GSE29221. The roles of autophagy‐related DEGs were investigated using protein–protein interaction (PPI) networks, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology (GO) enrichment, and Gene Set Enrichment Analysis (GSEA). Immune cell infiltration's correlation with these DEGs was also assessed. From the Human Autophagy Database (HADB), 232 autophagy‐related genes (ARGs) were identified, with an intersection of 17 key DEGs between GSE7014 and GSE29221. These genes are involved in pathways like autophagy–animal, NOD‐like receptor signalling, and apoptosis. In the protein network, epidermal growth factor receptor (EGFR) and phosphatase and tensin homologue (PTEN) showed significant interactions with ARGs. Survival analysis indicated the prognostic importance of calpain 2 (CAPN2), integrin subunit beta 1 (ITGB1), and vesicle‐associated membrane protein 3 (VAMP3). Lower immune scores were observed in the type 2 diabetes mellitus (DM2) group than in controls. Autophagy and ARGs significantly influence DFU pathophysiology.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3