Chara — a living sister to the land plants with pivotal enzymic toolkit for mannan and xylan remodelling

Author:

Franková Lenka1,Fry Stephen C.1ORCID

Affiliation:

1. The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK

Abstract

AbstractLand‐plant transglycosylases ‘cut‐and‐paste’ cell‐wall polysaccharides by endo‐transglycosylation (transglycanases) and exo‐transglycosylation (transglycosidases). Such enzymes may remodel the wall, adjusting extensibility and adhesion. Charophytes have cell‐wall polysaccharides that broadly resemble, but appreciably differ from land‐plants'. We investigated whether Chara vulgaris has wall‐restructuring enzymes mirroring those of land‐plants.Wall enzymes extracted from Chara were assayed in vitro for transglycosylase activities on various donor substrates — β‐(1→4)‐glucan‐based [xyloglucan and mixed‐linkage glucans (MLGs)], β‐(1→4)‐xylans and β‐(1→4)‐mannans — plus related acceptor substrates (tritium‐labelled oligosaccharides, XXXGol, Xyl6‐ol and Man6‐ol), thus 12 donor:acceptor permutations. Also, fluorescent oligosaccharides were incubated in situ with Chara, revealing endogenous enzyme action on endogenous (potentially novel) polysaccharides.Chara enzymes acted on the glucan‐based polysaccharides with [3H]XXXGol as acceptor substrate, demonstrating ‘glucan:glucan‐type’ transglucanases. Such activities were unexpected because Chara lacks biochemically detectable xyloglucan and MLG. With xylans as donor and [3H]Xyl6‐ol (but not [3H]Man6‐ol) as acceptor, high trans‐β‐xylanase activity was detected. With mannans as donor and either [3H]Man6‐ol or [3H]Xyl6‐ol as acceptor, we detected high levels of both mannan:mannan homo‐trans‐β‐mannanase and mannan:xylan hetero‐trans‐β‐mannanase activity, showing that Chara can not only ‘cut/paste’ these hemicelluloses by homo‐transglycosylation but also hetero‐transglycosylate them, forming mannan→xylan (but not xylan→mannan) hybrid hemicelluloses. In in‐situ assays, Chara walls attached endogenous polysaccharides to exogenous sulphorhodamine‐labelled Man6‐ol, indicating transglycanase (possibly trans‐mannanase) action on endogenous polysaccharides.In conclusion, cell‐wall transglycosylases, comparable to but different from those of land‐plants, pre‐dated the divergence of the Charophyceae from its sister clade (Coleochaetophyceae/Zygnematophyceae/land‐plants). Thus, the ability to ‘cut/paste’ wall polysaccharides is an evolutionarily ancient streptophytic trait.

Funder

Leverhulme Trust

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3