Coherence among Oregon Coast coho salmon populations highlights increasing relative importance of marine conditions for productivity

Author:

Davis Melanie J.1ORCID,Anthony James2,Ward Eric J.3,Firman Julie2,Lorion Christopher2

Affiliation:

1. U.S. Geological Survey Oregon Cooperative Fish and Wildlife Research Unit Corvallis Oregon USA

2. Oregon Department of Fish and Wildlife Corvallis Oregon USA

3. Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle Washington USA

Abstract

AbstractAnadromous fishes, such as Pacific salmon, spend portions of their life cycle in freshwater and marine systems, thus rendering them susceptible to a variety of natural and anthropogenic stressors. These stressors operate at different spatiotemporal scales, whereby freshwater conditions are more likely to impact single populations or subpopulations, while marine conditions are more likely to act on entire evolutionarily significant units (ESUs). Coherence in population parameters like survival and productivity can therefore serve as an indicator of relative influence. The goal of this study was to elucidate scale‐dependent shifts in Oregon Coast coho salmon productivity. We used a multivariate state‐space approach to analyze almost 60 years of stock‐recruitment data for the Oregon Coast ESU. Analyses were conducted separately for time periods prior to and after 1990 to account for improvements in abundance estimation methods and significant changes in conservation and management strategies. Prior to 1990, productivity declined for most Oregon Coast populations, especially through the 1980s. From 1990–onward, coherence increased, and trends tracked closely with the North Pacific Gyre Oscillation (NPGO). The latter period is associated with reductions in harvest rates and hatchery production such that the relative influence of the marine environment may have grown more apparent following the removal of these stressors. Furthermore, the link between productivity and NPGO is consistent with trends observed for several other Pacific salmon ESUs. If Oregon Coast coho salmon populations become more synchronous, managers can expect to face new challenges driven by reductions in the population portfolio effect and increasingly variable marine conditions due to climate change.

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3